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a b s t r a c t

This paper provides empirical formulas for rapidly calculating the resonant frequencies

of an orthotropic, rectangular plate with its edges constrained by elastic supports. In

particular, the classical boundary condition with guided supports at its edges is

considered. Other boundary conditions, such as the guided–free edges, guided–clamped

edges and guided–free support edges have also been included in the present study.

Simple and closed form empirical formulas have been derived to allow straightforward

computations of the modal resonant frequencies. The empirical formulas are based on

the analytical results obtained from the Rayleigh–Ritz method. However, the coefficient

is determined empirically from the results obtained by other more accurate computa-

tional scheme, e.g. finite element method. The method is further generalized to predict

the resonant frequencies for general boundary conditions of a square, orthotropic plate.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The study of flexural vibration of a rectangular plate has been a subject of extensive research for a few decades [1–27].
The determination of natural frequencies is often the focus of these studies because the plate’s responses due to external
excitations are usually dominated by the resonant responses. Leissa [6,7] presented a comprehensive review for calculating
the resonant frequencies of rectangular plates supported at their edges with the classical boundary conditions.

Use of Rayleigh’s method, Warburton [3,4] applied characteristic beam vibration functions (see, for example Ref. [25]) to
develop a simple approximate expression to calculate the resonant frequencies for the flexural vibration of thin, isotropic,
rectangular plates having any combination of clamped, free or simply supported edges with an arbitrary aspect ratio.
Warburton [3] arranged the solutions for six classical boundary conditions in a tabular form for ease of reference. Dickinson
[8] subsequently generalized Warburton’s method to give the corresponding approximate expressions for orthotropic,
rectangular plates with the results for isotropic plates as a particular case. These expressions [25] for calculating the
resonant frequencies are straightforward and no prior knowledge of vibration theory are needed.

It is also remarkable that the three general boundary conditions (free, simply supported and clamped edges) are
commonly considered in the early studies. However, these classical boundary conditions are never fully achieved in reality.
It is understood that the support along the plate’s edges is always elastic in nature. More importantly, it is not only
convenient but also necessary to rapidly calculate the natural frequencies of rectangular panels for a quick check on the
resonant responses during the design stage of many engineering problems. To meet this purpose, Nassar [15] developed a
simple analytical formula to approximate the resonant frequencies of a translationally restrained isotropic, rectangular
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plate where the rotational stiffness along the edges is allowed to vary. Gorman [16–18] used a superposition method to
calculate numerically the natural frequencies of the isotropic/orthotropic, rectangular plates with different classical
boundary conditions at the edges. However, there are usually no exact solutions when the edges of the plates are supported
with general elastic constants.

The objectives of the current paper are twofold. First, we wish to develop approximate formulas to calculate the
resonant frequencies for rectangular plates with guided (also referred as sliding) edges. Although the occurrence of guided
supported for a panel is less frequently met in engineering applications, it is useful to document such formulas for future
reference. To this end, we start our analysis by deriving a set of non-dimensional governing equations for determining the
transverse vibration of orthotropic plates. From the non-dimensional analysis, we show that the approximate formulas for
the resonant frequencies of the four general boundary conditions have the same form. They can be expressed in terms of
the geometric ratio, the stiffness ratio and Poisson’s ratio. In addition, the natural frequencies also vary with constant
coefficients which are dependent on the types of support (free, simply supported, clamped and guided) at the edges. To
simplify the analysis, we assume that the supports are uniform and the same as the adjacent edges although the opposite
edges may have different elastic constants. Secondly, we aim to develop empirical formulas for the natural frequencies of a
square, orthotropic plate with an arbitrary elastic constant: either the translational stiffness or rotational stiffness is
allowed to vary.

In the current study, we examine a more general situation: the flexural vibration of the orthotropic plates. It is because
many engineering structures are made of composite materials which may be modelled conveniently as orthotropic,
rectangular plates. Furthermore, panels with unequal stiffening along two orthogonal directions, such panels as walls and
ceilings used in the building structures are often modelled as the orthotropic plates.

To the best of our knowledge, the formulas developed here are not found in the previous literature. They serve as a
convenient tool for calculating the natural frequencies of the transverse vibration of the orthotropic/isotropic plates. In
addition, the methodology can easily be applied in other situations to calculate the resonant frequencies for plates with
different elastic constants.

2. Formulation of the problem

A thin elastic plate, which has uniform thickness h and mass per unit area Sr, is aligned in the x–y plane with xA(0, Lx)
and yA(0, Ly). Suppose that the edges of the rectangular plate are uniformly restrained with linear elastic springs. We
assume a more general situation where the rectangular plate is made of orthotropic materials since an isotropic plate can
be treated as a special case. Fig. 1 shows the schematic diagram of the problem.

For an orthotropic plate restraining uniformly along its edges, the governing equation for its transverse displacement,
w(x, y), is given by [26,27]

Bx
q4w

qx4
þ 2ðBxy þ 2BkÞ

q4w

qx2 qy2
þ By

q4w

qy4
� Sro2w ¼ 0, (1)

where o is the angular frequency of the vibration, the four orthotropic constants are defined as follows:

Bx ¼ Exh3=12ð1� nxnyÞ, (2a)

By ¼ Eyh3=12ð1� nxnyÞ, (2b)

Bxy ¼ nxBy ¼ nyBx (2c)

and

Bk ¼ Gkh3=12, (2d)
x

y

Lx

Ly

St

Sr

(0, 0) 

Fig. 1. Geometric configuration of an elastically restrained rectangular plate.
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where Ex and Ey are the respective Young’s moduli, nx and ny are the respective Poisson’s ratios in the x- and y-directions
and Gk is the shear modulus of the orthotropic plate. Use of a symmetric argument of the orthotropic plate leads to the
identity of nxEy ¼ nyEx. Hence, Bxy can be written in the form given in Eq. (2c).

To facilitate the subsequent analysis, it is useful to express the governing differential equation in a non-dimensional form as

B̄x
q4w̄

qx̄4
þ 2ðB̄xy þ 2B̄kÞ

q4w̄

qx̄2 qȳ2
þ B̄y

q4w̄

qȳ4
� ō2w̄ ¼ 0, (3)

where overbar represents the corresponding parameter in its non-dimensional form. The flexural displacement, w(x, y) is non-
dimenisonalized by h, the width (measured in the x-direction) by Lx and the length (measured in the y-direction) by Ly, the four
orthotropic constants are non-dimenisonalized by Bm and the angular frequency of the vibration, o is non-dimenisonalized by

os ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm=Sr

q
=LxLy, (4)

where Bm is the geometric mean of the direct bending stiffness in the x- and y-directions, i.e.

Bm ¼

ffiffiffiffiffiffiffiffiffiffi
BxBy

q
¼ Emh3=12ð1� n2

mÞ, (5a)

Em and nm are the geometric means of Young’s moduli and Possion’s ratios, respectively. They are defined as follows:

Em ¼

ffiffiffiffiffiffiffiffiffiffi
ExEy

q
(5b)

and

nm ¼
ffiffiffiffiffiffiffiffiffiffi
nxny

p
. (5c)

By using Eqs. (2a)–(2d) and (5a)–(5c), we can show that the four non-dimenisonal orthotropic constants can be reduced to

B̄x ¼ Bx=Bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ey

q
, (6a)

B̄y ¼ By=Bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ey=Ex

q
, (6b)

B̄xy ¼ Bxy=Bm ¼ nm (6c)

and

B̄k ¼ Bk=Bm ¼ Gkð1� n
2
mÞ=Em. (6d)

Substitution of Eqs. (6a)–(6d) into Eq. (3) leads to an expression for the non-dimensional governing equation:ffiffiffiffiffi
Ex

Ey

s
q4w̄

qx̄4
þ 2 nm þ

2Gkð1� n2
mÞ

Em

" #
q4w̄

qx̄2 qȳ2
þ

ffiffiffiffiffi
Ey

Ex

s
q4w̄

qȳ4
� ō2w̄ ¼ 0 (7)

which is independent on the four non-dimensional orthotropic constants.
The bending and twisting moments per unit length can be expressed in terms of w as follows:

Mx

My

Mxy

2
64

3
75 ¼ �

Bx Bxy 0

Bxy By 0

0 0 Bk

2
64

3
75

q2w=qx2

q2w=qy2

2q2w=qxqy

2
664

3
775 (8)

and the shear forces per unit length in the x- and y-directions can be written as

Qx ¼
qMx

qx
þ
qMxy

qy
¼ �Bx

q3w

qx3
� ðBxy þ 2BkÞ

q3w

qxqy2
, (9a)

Qy ¼
qMy

qy
þ
qMxy

qx
¼ �By

q3w

qy3
� ðBxy þ 2BkÞ

q3w

qx2qy
. (9b)

For uniformly restrained edges, the boundary conditions for the rectangular orthotropic plate are given by

St;1w ¼ Qx; Sr;1qw=qx ¼ �Mx; at x ¼ 0; (10a,b)

St;2w ¼ �Qy; Sr;2qw=qy ¼ My; at y ¼ Ly; (10c,d)

St;3w ¼ �Qx; Sr;3qw=qx ¼ Mx; at x ¼ Lx; (10e,f)

St;4w ¼ Qy; Sr;4qw=qx ¼ �My; at y ¼ 0; (10g,h)
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where St and Sr are the translational and rotational stiffness per unit length. The subscripts 1, 2, 3 and 4 represent the
physical properties of the four edges counting clockwise from the left vertical edge at x ¼ 0.

A set of non-dimensionalized boundary conditions for the problem can then be obtained by substituting Eqs. (8), (9a)
and (9b) into Eqs. (10a)–(10h) to yield

S̄t;1w̄ ¼ �R�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ey

q q3w̄

qx̄3
� ½nm þ 2Gkð1� n

2
mÞ=Em�R

q3w̄

qx̄qȳ2
at x ¼ 0, (11a)

S̄r;1
qw̄

qx̄
¼ R�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ey

q
q2w̄=qx̄2 þ nmRq2w̄=qȳ2 at x ¼ 0, (11b)

S̄t;2w̄ ¼ �R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ey=Ex

q q3w̄

qȳ3
� ½nm þ 2Gkð1� n

2
mÞ=Em�R

�1 q3w̄

qx̄qȳ2
at y ¼ Ly, (11c)

S̄r;2
qw̄

qx̄
¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ey

q
q2w̄=qx̄2 þ ðnm=RÞq2w̄=qȳ2 at y ¼ Ly, (11d)

S̄t;3w̄ ¼ R�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ey

q q3w̄

qx̄3
þ ½nm þ 2Gkð1� n

2
mÞ=Em�R

q3w̄

qx̄qȳ2
at x ¼ Lx, (11e)

S̄r;3
qw̄

qx̄
¼ �½R�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ey

q
q2w̄=qx̄2 þ nmRq2w̄=qȳ2� at x ¼ 0, (11f)

S̄t;4w̄ ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ey=Ex

q q3w̄

qȳ3
þ ½nm þ 2Gkð1� n

2
mÞ=Em�R

�1 q3w̄

qx̄qȳ2
at y ¼ Ly, (11g)

S̄r;4
qw̄

qx̄
¼ �½R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ey

q
q2w̄=qx̄2 þ ðnm=RÞq2w̄=qȳ2� at y ¼ Ly, (11h)

where R is the aspect ratio of the rectangular plate which is given by

R ¼ Ly=Lx. (12)

The respective non-dimensional spring constants are defined by

S̄t;1 ¼
St;1Ly

Bm=LxLy
, (13a)

S̄t;3 ¼
St;3Ly

Bm=LxLy
, (13b)

S̄r;1 ¼
Sr;1Ly

Bm
, (13c)

S̄r;3 ¼
Sr;3Ly

Bm
, (13d)

S̄t;2 ¼
St;1Lx

Bm=LxLy
, (13e)

S̄t;4 ¼
St;4Lx

Bm=LxLy
, (13f)

S̄r;2 ¼
Sr;2Lx

Bm
, (13g)

S̄r;4 ¼
Sr;4Lx

Bm
. (13h)

For the special case of an isotropic plate, we have E ¼ Em, n ¼ nm and Gk ¼ E=2ð1þ nÞ. Hence, we can write

Bx ¼ By ¼ B ¼ Eh3=12ð1� n2Þ, (14a)

Bxy ¼ Eh3n=12ð1� n2Þ, (14b)

Bk ¼ Eh3=24ð1þ nÞ (14c)
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and

Bxy þ 2Bk ¼ B. (14d)

With Eqs. (14a)–(14d), the governing differential equations and the associated boundary conditions, cf Eqs. (3) and
Eqs. (11a)–(11h) can then be reduced to the identical form given by Li et al. [24]. The non-dimensional spring constants are
different for different edges for general boundary conditions. There are no simple analytical and empirical formulas to
calculate the resonant frequencies of the rectangular plate with the general boundary conditions. It is possible to use the
series solution technique [22–24] to solve for the resonant frequencies of the orthotropic panel. On the other hand, we may
use other numerical techniques, e.g. the standard finite element method (FEM) and a systematic superposition method
[16–18], to solve Eq. (3) subject to the boundary conditions given in Eqs. (11a)–(11h). However, we endeavour to develop
simple empirical solutions for some special cases detailed in the next sections.

3. An empirical formula for the guided support and other classical boundary conditions

It is of interest to note that there is a solution for Eq. (3) if the edges are restrained uniformly for the translation stiffness,
St and the rotation stiffness, Sr such that

St ¼ St;1 ¼ St;2 ¼ St;3 ¼ St;4 (15a)

and

Sr ¼ Sr;1 ¼ Sr;2 ¼ Sr;3 ¼ Sr;4. (15b)

When the spring constants becomes very small (St ¼ Sr ¼ 0) or very large ðSt ¼ Sr !1Þ, we can see that the non-
dimensional spring constants for all edges become independent on the geometric dimensions of the plate with

S̄t ¼ S̄t;1 ¼ S̄t;2 ¼ S̄t;3 ¼ S̄t;4 (16a)

and

S̄r ¼ S̄r;1 ¼ S̄r;2 ¼ S̄r;3 ¼ S̄r;4. (16b)

In particular, four types of classical boundary conditions can be identified:
(1)
 Free edges, denoted by [FFFF], with S̄t ¼ S̄r ¼ 0.

(2)
 Simply supported edges, denoted by [SSSS], with S̄t !1 and S̄r ¼ 0.

(3)
 Clamped edges, denoted by [CCCC], with S̄t !1 and S̄r !1.

(4)
 Guided edges, denoted by [GGGG], with S̄t ¼ 0 and S̄r !1.
Based on Warburton’s analysis [3], Dickinson and his co-worker [8,9] used the Rayleigh method to obtain an approximate
expression for the resonant frequencies of a thin orthotropic plate for the boundary conditions given in (1), (2) and (3)
above. The resonant frequencies can be written in a non-dimensional form as

f̄ ij ¼
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQiQjÞ

2ðR̄
2
ij þ R̄

�2
ij Þ þ 2B̄xyHiHj þ 4B̄kJiJj

r
, (17)

where f̄ ijð¼ ōij=2pÞ is the non-dimensional natural frequency of the mode indices (i, j) and the dimensionless length ratio
R̄ij is determined by

R̄ij ¼
ðBxÞ

1=4ðQi=LxÞ

ðByÞ
1=4ðQj=LyÞ

¼ ðEx=EyÞ
1=4ðQi=QjÞR (18)

and the aspect ratio, R, is defined in Eq. (12). It is of interest to note that the dimensionless length ratio R̄ij becomes infinite
when Qj ¼ 0 and 1=R̄ij becomes unbounded when Qi ¼ 0. However, the term ðQiQjÞ

2ðR̄
2
ij þ R̄

�2
ij Þ remains finite in both

situations. Hence, fij is finite and bounded in these two limiting cases, cf Eq. (17).
From the dimensional analysis detailed above, the parameters Qe, He and Je (for the index e ¼ i or j) are constants which

only depend on whether S̄t and/or S̄r is 0 or N. They can be determined straightforwardly by means of the Rayleigh method
for [FFFF], [SSSS] and [CCCC]. For higher order modes (i or j greater than 3), Qe, He and Je can be expressed conveniently in
terms of a set of constants: bQ ðS̄t ; S̄rÞ, bHðS̄t ; S̄rÞ and bJðS̄t ; S̄rÞ as follows:

Q� ¼ �þ bg , (19a)

H� ¼ Q2
� ð1þ bH=Q�Þ (19b)

and

J� ¼ Q2
� ð1þ bJ=Q�Þ. (19c)
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For [SSSS], the constants bQ , bH and bJ can be determined exactly as

bQ ¼ bH ¼ bJ ¼ 0. (20a)

For [FFFF] and [CCCC], they can be determined approximately [8] to give

bQ ¼ �3=2; bH ¼ �2=p and bJ ¼ 6=p for ½FFFF�, (20b)

bQ ¼ 1=2; bH ¼ �2=p; and bJ ¼ �2=p for ½CCCC�. (20c)

Table 1 lists these numerical values Q, H and J for i or j less than and equal to 3. Table 1 also gives the functions for bQ , bH

and bJ for higher order modes.
To confirm the validity of the analytical formula for orthotropic plates, Eq. (17) is used to calculate the resonant

frequencies. The computed results are compared with the published results given by Sakata et al. [14]. Their results were
presented in term of a non-dimensional factor, l̄ij ¼ oL2

x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sr=Bx

p
, which can easily be converted to f̄ ij by multiplying the

factor of ðR=2pÞðEx=EyÞ
1=4. Figs. 2 and 3 show, respectively, the comparisons of the resonant frequencies calculated by both

methods for simply supported and the clamped plates. The difference between modified Sakata’s result and the numerical
results according to Eq. (17) is generally well below 1 percent. We also compare the results according to Eq. (17) with the
numerical results using FEM for the orthotropic plate with free boundary conditions in Fig. 4. The differences between
these two calculations are below 1.2 percent. These comparisons suggest that Eq. (17) can generally be used for orthotropic
plates with a reasonably good accuracy.

From the computational view point, Eq. (17) provides a simple but sufficiently accurate formula to calculate the resonant
frequencies of an orthotropic plate with [FFFF], [SSSS] and [CCCC] edges. Since these modal parameters are only dependent
on S̄t and S̄r but not dependent on the physical properties and dimensions of the rectangular plate, we expect that the same
formula can be used to compute the resonant frequencies for the orthotropic plate with [GGGG] edges. However, we need to
determine a separate set of parameters for Qe, He and Je in Eq. (17). Although it is possible to use the Rayleigh method again
to derive the corresponding formula, we propose an alternative method to determine Qe, He and Je. The method can then be
generalized to more general boundary conditions in Section 4. Since these three parameters are the same for isotropic and
orthotropic plates, we can simply substitute Eqs. (14a)–(14c) into Eq. (17) and re-write the resulting expression as

f̄
2
ij ¼

p2

4

 !
½ðQ4

i R2 þ Q4
j R�2Þ þ 2JiJj þ 2nðHiHj � JiJjÞ� (21)

We can use, for example, the standard FEM program to compute the resonant frequencies of the isotropic plate by setting
Possion’s ratio to zero and the aspect ratio varying from 1 to 4 at a step of 0.1. It is also of interest to note that f11 is zero for all
aspect ratios which implies Q1 ¼ J1 ¼ 0. Next, a graph of f̄

2
ij is plotted versus ðR2 þ R�2Þ for i ¼ j ¼ 2, 3, 4 and 5, in turn. A

straight line of different slopes and y-intercepts is obtained for different values of i and j. We can determine Qe from the
slope and Je from the y-intercept of the graphs. Hence, we can show for [GGGG] that

Q� ¼ �� 1; for � � 1 (22a)

J� ¼ ð�� 1Þ2; for � � 1. (22b)
Table 1

Parametric values of Q� , H� and J� (where � ¼ 1;2;3) and bQ , bH and bJ (for e43) for four common boundary conditions (free, simply supported, clamped

and guides edges).

Type e Q� H� J�

FFFF 1 0 0 0

2 0 0 1.216

3 1.506 1.248 5.017

e43 �þ bQ , where bQ ¼ �3=2 Q2
� ð1þ bH=Q�Þ, where bH ¼ �2=p Q2

� ð1þ bJ=Q�Þ, where bJ ¼ 6=p

SSSS 1 1 1 1

2 2 4 4

3 3 9 9

� � 1 �þ bQ , where bG ¼ 0 Q2
� ð1þ bH=Q�Þ, where bH ¼ 0 H� ¼ J�

CCCC 1 1.506 1.248 1.248

2 2.5 4.658 4.658

3 3.5 10.02 10.02

�41 �þ bQ , where bQ ¼ 1=2 Q2
� ð1þ bH=Q�Þ, where bH ¼ �2=p H� ¼ J�

GGGG 1 0 0 0

2 1 1 1

3 2 4 4

� � 1 �þ bQ , where bQ ¼ �1 Q2
� ð1þ bH=Q�Þ, where bH ¼ 0 H� ¼ J�
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Fig. 2. The resonant frequencies of the simply supported orthotropic rectangular plates (B̄k ¼ 0:15
ffiffiffi
2
p

and B̄x=B̄y ¼ 2) calculated by the empirical formula

and comparison with the results obtained from Sakata et al. [14] (*).
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Fig. 3. The resonant frequencies of the clamped orthotropic rectangular plates (B̄k ¼ 0:15
ffiffiffi
2
p

and B̄x=B̄y ¼ 2) calculated by the approximate formula (solid

line) and comparison with the results by Sakata et al. [14] (*).

K.M. Li, Z. Yu / Journal of Sound and Vibration 327 (2009) 254–268260
Although other modal factors (i.e. different combinations of i and j) may be employed instead of those used above, the
parametric values for Q� and J� remain very close to those given in Eqs. (22a) and (22b) above.

After the determination of Q� and J�, we can find H� as follows. The resonant frequencies are computed by setting R to 1
and varying Poisson’s ratio from 0 to 0.9 for i ¼ j ¼ 1, 2, 3 and 4, in turn. A graph of f̄

2
ij is plotted against Possion’s ratio.

The parametric value of He can be determined from the slope of the graph. It is found that, the resonant frequencies
are relatively independent on Poisson’s ratio for a given pair of modal factor (i, j). Hence, we have HiHj � JiJj ¼ 0 which
means

H� ¼ J� ¼ ð�� 1Þ2. (22c)

Indeed, this method has been applied to find the respective parametric values of Q� and J� for [FFFF], [SSSS] and [CCCC]. The
numerical results are the same as those listed in Table 1. By using the method detailed above, it is reassuring to confirm
that the analogous results are obtained comparable to the published formulas.

Dickinson [8] also obtained approximate formulas for other classical boundary conditions for [SSFF], [CCFF] and [CCSS].
If we follow the same procedures as discussed above, we can obtain an analogous formulas for [GGFF], [GGSS] and [GGCC]
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Fig. 4. The resonant frequencies of the free orthotropic rectangular plates (B̄k ¼ 0:15
ffiffiffi
2
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and B̄x=B̄y ¼ 2) calculated by the approximate formula (solid line)

and comparison with the results by FEM (*).
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with Q�, J� and H� given by
(i)
 [GGFF]

Q� ¼ �� 5=4; for �43 (23a)

H� ¼ ð�� 5=4Þ2 1�
1

ð�� 5=4Þp

� �
; for �43 (23b)

J� ¼ ð�� 5=4Þ2 1þ
3

ð�� 5=4Þp

� �
; for �43. (23c)
(ii)
 [GGSS]

Q� ¼ �� 1=2; for � � 1 (24a)

H� ¼ J� ¼ ð�� 1=2Þ2; for � � 1. (24b)
(iii)
 [GGCC]

Q� ¼ �� 1=4; for �43 (25a)

H� ¼ J� ¼ ð�� 1=4Þ2 1�
1

ð�� 1=4Þp

� �
; for �43. (25b)
The parameters for the boundary conditions of [GGGG], [GGFF], [GGSS] and [GGCC] are summarized in Table 2.
We test the accuracy of the empirical formula given in Eq. (17) for [GGGG], [GGFF], [GGSS] and [GGCC] with the

appropriate parameters for Q�, J� and H� derived earlier. In Fig. 5(a)–(d), we show typical plots of f̄
2
ij versus ðR̄

2
ij þ R̄

�2
ij Þ for

the orthotropic plate with the boundary supports of [GGGG], [GGFF], [GGSS] and [GGCC], respectively. Here, the numerical
results for modes (2,2), (3,3), (4,4) and (5,5) with B̄k ¼ 0:15

ffiffiffi
2
p

and B̄x=B̄y ¼ 2 are shown. A set of calculations was
conducted to confirm the accuracy for predicting the resonant frequencies of mode (1,1) by using Eq. (17). The numerical
results for mode (1,1) are not shown in Fig. 5 for the clarity of presentation. It is because the natural frequencies for mode
(1,1) are either zero or very small comparing to those of the other modes.

The discrepancies between these two numerical results are generally less than 2.4 percent. As predicted by Eq. (21), the

term ðR̄
2
ij þ R̄

�2
ij Þ varies linearly with the resonant frequencies. From the slopes of the y-intercepts, we can also confirm that

Q� and J� for different boundary conditions are, indeed, given in Table 2.
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Table 2

Parametric values of Q� , H� and J� (where � ¼ 1;2;3) and bQ , bH and bJ (for e43) for the cases of [GGFF], [GGSS] and [GGCC].

Type e Q� H� J�

GGFF 1 0 0 0

2 0.752 0.3093 1.18

3 1.7454 2.481 4.411

�43 �þ bQ , where bQ ¼ �5=4 Q2
� ð1þ bH=Q�Þ, where bH ¼ �1=p Q2

� ð1þ bJ=Q�Þ, where bJ ¼ 3=p

GGSS 1 0.5 0.25 0.25

2 1.5 2.25 2.25

3 2.5 6.25 6.25

� � 1 �þ bQ , where bQ ¼ �1=2 Q2
� ð1þ bH=Q�Þ, where bH ¼ 0 H� ¼ J�

GGCC 1 0.752 0.3093 0.3093

2 1.749 2.481 2.481

3 2.75 6.686 6.686

�43 �þ bQ , where bQ ¼ �1=4 Q2
� ð1þ bH=Q�Þ, where bH ¼ �1=p H� ¼ J�
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Fig. 5. The linear relationship of ðR̄
2
xy þ R̄

�2
xy Þ in the function of f̄

2
ij for the orthotropic plate (B̄k ¼ 0:15

ffiffiffi
2
p

and B̄x=B̄y ¼ 2) with four classical boundary

conditions: (a) [GGGG]; (b) [GGFF]; (c) [GGSS] and (d) [GGCC]. Solid line: mode (2,2); dash-dotted line: mode (3,3); dotted line: mode (4,4) and dashed

line: mode (5,5). Numerical predictions according to the FEM are marked as ‘*’ for different boundary conditions.
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Next, we display the variation of f̄
2
ij with nm for the same modes shown in Fig. 6(a)–(d). The numerical values for R, B̄k

and B̄x=B̄y are chosen to be 1, 0:15
ffiffiffi
2
p

and 2, respectively, in these plots. We can see from the figures that the slope of the

straight line is zero for the range of nm shown in the plots for [GGGG], which suggests that the predicted f̄
2
ij are independent

on nm, i.e. H� ¼ J� for all e and for [GGFF], the term f̄
2
ij varies linearly with nm. The numerical results are similar for other

parameters and they are not shown for succinctness.
From the plots shown in Figs. 5 and 6, we can see that Eq. (17) offers a simple formula for predicting resonant

frequencies of orthotropic and isotropic plates which are supported with guided edges. As expected, the predictions
according to the empirical formula agree well with the FEM results (within the thickness of the lines). However, we only
display five typical results calculated according to the FEM for each case. They are marked as * in Figs. 5 and 6.
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Fig. 6. The linear relationship of n̄ in the function of f̄
2
ij for the orthotropic plate (B̄k ¼ 0:15

ffiffiffi
2
p

and B̄x=B̄y ¼ 2) with four classical boundary conditions: (a)

[GGGG]; (b) [GGFF]; (c) [GGSS] and (d) [GGCC]. Solid line: mode (2,2); dash-dotted line: mode (3,3); dotted line: mode (4,4) and dashed line: mode (5,5).

Numerical predictions according to the FEM are marked as ‘*’ for different boundary conditions.
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4. Approximate solutions for uniformly restrained edges for a square plate

A close examination of the boundary conditions, Eqs. (11a)–(11h), reveals that the non-dimensional spring constants
[Eqs. (13a)–(13h)], are dependent on the aspect ratio, R, of the plate. They can be de-coupled from R when Lx ¼ Ly , i.e. a
square plate with R ¼ 1. In this case, Q�, J� and H� are only dependent on the non-dimensional spring constants defined in
Eqs. (13a)–(13h). If the plate is supported by springs of uniform stiffness per unit length, then it is possible to derive
empirical formulas for predicting the modal resonant frequencies of a square plate.

4.1. Edges with a variable rotational spring stiffness

A square plate is considered in our first test case where S̄r changes from 0 to N but S̄tð! 1Þ remains unchanged. In this
case, the supports vary from [SSSS] to [CCCC]. It is remarkable that H� ¼ J� for all values of e according to Table 1. We can
then simplify Eq. (17) to

f̄ ij ¼
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQiQjÞ

2ðR̄
2
ij þ R̄

�2
ij Þ þ 2ðB̄xy þ B̄kÞHiHj

r
(26a)

because HiHj � JiJj ¼ 0. Eq. (18) can then be reduced to

R̄ij ¼ ðEx=EyÞ
1=4ðQi=QjÞ, (26b)

where R is set at 1 for a square plate. Furthermore, we can see that Q� and H� (e ¼ i or j) are functions of S̄r only. A
preliminary computational analysis has been conducted to determine the range for S̄r by using the standard FEM program.
The numerical results have suggested that the edges can be treated effectively as [SSSS] if S̄r � 10�2 and as [CCCC] if
S̄r4105.

The determination of the empirical functions for Q� and H� can be simplified considerably if we use XrA(–2, 5) in favour
of S̄r where

Xr ¼ log10ðS̄rÞ. (27)
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We divide Xr into equal-spaced points from �2 to 5 with a step of 0.2. For a given value of Xr, we can use the method
described in Section 3 to determine bQ and bH . We then apply the method of Padé approximation [28] to approximate bQ

and bH as follows:

bQ ðS̄rÞ or bHðS̄rÞ ¼
Xn

k¼0

akXk
r

,Xn

k¼1

bkXk
r , (28)

where ak and bk have different parameters for bQ and bH . We find that a fourth-order polynomial for the Padé
approximants is sufficiently accurate to approximate the resonant frequencies of the square plate. Table 3 lists the
coefficients of the polynomials for the rational functions. It is also noted that use of bQ and bH will not give an accurate
prediction of the resonant frequencies for e ¼ 1. The problem can be traced back to the parameters used for calculating Q1

and H1 when S̄r !1. In these two cases, Q1 ¼ 1.506 and H1 ¼ 1.248 should be used instead. By using the improved values
for Q1 and H1, we can derive the corresponding Padé approximants for Q1ðS̄rÞ and H1ðS̄rÞ with the forms also given in
Eq. (28) but they are calculated with different sets of ak and bk. Numerical experiments suggest that use of fifth-order
polynomials in the rational function leads to more accurate numerical results for these two cases. The parametric values for
Q1 and H1 are also listed in Table 3 for ease of reference.

In a recent study, Nassar [15] derived an approximate formula of the fundamental frequency, l̄11 ¼ Rf̄ 11=2p, for an
isotropic plate with arA(0, N) and at-N and different R. Gorman used the superposition method to obtain l̄11 for the
isotropic plate with different coefficients for the translational and rotational stiffness of the edges. We present their
numerical results in terms of f̄ ij and use them to validate the approximate formula derived in the present study. We only
compare the numerical results with those taken from Nassar and Gorman [16] for the (1,1) mode only. We also compare
with the numerical results obtained by the standard FEM program for modes (1,2), (2,2), (3,4) and (4,5). In all these
numerical results, the aspect ratio of the isotropic rectangular plates is set at 1. Generally speaking, good agreements are
obtained by using the corresponding Padé approximants for calculating Q�ðS̄rÞ and H�ðS̄rÞ. These numerical values for Q�ðS̄rÞ

and H�ðS̄rÞ are substituted into Eq. (26a) to calculate the resonant frequencies. The comparisons of the modal resonant
frequencies are shown in Fig. 7. The average discrepancies between the empirical scheme and the standard FEM scheme are
below 2.5 percent in all cases. For the fundamental modes, the average discrepancy between the numerical results obtained
from the empirical scheme and those taken from Nassar and Gorman are below 1.5 percent.

Fig. 8 shows the comparison of the predicted resonant frequencies for the orthotropic plate. They are calculated by the
empirical formula and by the standard FEM program. The average discrepancies between these two numerical results are
well below 2.6 percent.

This approach can easily be extended for supports with other parametric values for the translational stiffness. For
instance, if S̄t is taken as 1000, then the Padé approximants and their corresponding coefficients for the rational functions
can be determined from the resonant frequencies obtained from the standard FEM results. The determined parameters
are listed in Table 4 for completeness. For the case when e ¼ 1 and 2, we find that use of bQ and bH does not give
satisfactory numerical results because more accurate values for Q1, H1, J1, Q2, H2 and J2 are needed when the translational
stiffness gets smaller. In these situations, separate Padé approximants are required and these parametric values are listed
in Table 4.

Using ak and bk in the approximate formula, we can calculate the corresponding modal frequencies f̄ ij with the aspect
ratio set at 1. We can compare these numerical results with those obtained from the FEM program for different modes.
These comparisons are shown in Fig. 9 where the resonant frequencies of modes (1,1), (1,2), (2,2), (3,4) and (4,5) for the
isotropic plates are chosen for the purpose of illustration. The average discrepancies of the predicted f̄ ij between the two
prediction schemes are well below 2.4 percent in all cases.
Table 3

Parametric values of Q� , H� and J� (where � ¼ 1;2;3) and bQ , bH and bJ (for e43) for the case of S̄t !1 and S̄r 2 ð10�2;105
Þ.

a0 a1 a2 a3 a4 a5

bQ 0.02639 0.03773 0.02416 0.008117 0.001159 0

bH ¼ bJ –0.001692 –0.01134 �0.01855 –0.01183 –0.002594 0

Q1 1.0872 –0.4243 0.4601 0.009575 0.009225 0

H1 ¼ J1 0.9981 –0.9856 0.5114 –0.07316 0.01903 –0.002400

b0 b1 b2 b3 b4 b5

bQ 1 –0.7745 0.3436 –0.03034 0.005110 0

bH ¼ bJ 1 –0.8644 0.3379 –0.03127 0.007158 0

Q1 1 –0.5381 0.3968 –0.008375 0.007026 0

H1 ¼ J1 1 –0.9902 0.4993 –0.08075 0.01819 –0.002085
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4.2. Edges with variable translational stiffness

In this section, we wish to consider the case for a square plate where the edges change from [GGGG] to [CCCC], i.e. S̄t

varys from 0 to N but S̄rð! 1Þ is kept constant. By examining the parametric values for Q�, H� and J� in Tables 1 and 2 for
[CCCC] and [GGGG], we expect that H� ¼ J� as described in the last section. The approximate resonant frequency can also be
computed by Eq. (26a) provided that Q� and H� are known. Again, we use Padé approximation to calculate bQ ðS̄tÞ and bHðS̄tÞ

which can then be used to approximate Q� and H� by applying Eqs. (19a) and (19b) for different e. Prior numerical analyses
indicate that the effective range for S̄t is best set as �1 � Xt � 6 where

Xt ¼ log10ðS̄tÞ. (29)

We can then calculate bQ ðS̄tÞ and bHðS̄tÞ by using the following Padé approximations:

bQ ðS̄tÞ or bJðS̄tÞ ¼
Xn

k¼0

dkXk
t

,Xn

k¼0

dkXk
t , (30)

where up to fifth-order polynomials are needed to approximate these two functions. We also find that separate Padé
approximants are needed to calculate Q1 and H1, respectively, for better agreements with the FEM results. In Table 5, we list
the corresponding parametric values for ck and dk used in Eq. (30) for information.
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Table 4

Parametric values of Q� , H� and J� (where � ¼ 1;2;3) and bQ , bH and bJ (for e43) for the case of S̄t ¼ 1000 and S̄r 2 ð10�2;105
Þ.

a0 a1 a2 a3 a4 a5

bQ –0.4661 0.1783 –0.1760 –0.01311 0 0

bH ¼ bJ 0.02473 –0.03275 –0.006754 –0.004343 0 0

Q1 1.0190 –0.3347 0.4652 0.03454 0.01346 0

H1 ¼ J1 0.9431 –0.4716 0.3912 0.05484 0.01860 0

Q2 1.9001 –1.0748 0.8180 0.01975 0.02429 0

H2 ¼ J2 2.6775 –3.0383 1.7491 –0.3203 0.1751 –0.01207

b0 b1 b2 b3 b4 b5

bQ 1 –0.3990 0.3723 0.02636 0 0

bH ¼ bJ 1 –0.5765 0.3747 0.03976 0 0

Q1 1 –0.4433 0.4303 0.01698 0.01124 0

H1 ¼ J1 1 –0.6391 0.3459 0.01579 0.01195 0

Q2 1 –0.5870 0.4249 0.006520 0.01224 0

H2 ¼ J2 1 –1.0769 0.6210 –0.1313 0.05987 –0.004141
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Fig. 9. Comparison of the resonant frequency f̄ ij of isotropic plates for the case of S̄t ¼ 1000 and S̄r 2 ð10�2;105
Þ calculated by approximate formula (solid

line) and FEM (*).

Table 5

Parametric values of Q� , H� and J� (where � ¼ 1;2;3) and bQ , bH and bJ (for e43) for the case of S̄r !1 and S̄t 2 ð10�1;106
Þ.

c0 c1 c2 c3 c4 c5

bQ –0.9981 0.5840 –0.1123 0.007991 0 0

bH ¼ bJ 0.01341 0.01164 –0.002187 –0.001765 0.003178 �7:883� 10�4

Q1 0.2387 –0.06369 –0.008337 0.004859 �5:667� 10�4 5:694� 10�4

H1 ¼ J1 0.1261 0.009590 –0.01123 –0.001729 �1:211� 10�4 7:899� 10�4

d0 d1 d2 d3 d4 d5

bQ 1 –0.5811 0.1156 –0.006028 0 0

bH ¼ bJ 1 –1.4368 0.8543 –0.2372 0.02668 �3:495� 10�4

Q1 1 –0.9074 0.3592 –0.07450 0.007923 2:458� 10�5

H1 ¼ J1 1 –1.0847 0.5012 –0.1176 0.01288 6:221� 10�5
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Based on Eq. (30), we can calculate the modal frequencies for the present situation with S̄t 2 ð0;1Þ and S̄r !1 by using
the parametric values listed in Table 5. As shown in Fig. 10, we compare the results of the resonant frequencies for the
isotropic plates calculated according to the empirical formula and the standard FEM program for modes (1,1), (1,2), (2,2),
(3,4) and (4,5) with R set at 1. The differences between these two numerical results are within 2.7 percent.
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5. Conclusions

Approximate formulas have been developed for calculating the resonant frequencies of the vibration of orthotropic/
isotropic rectangular plates with edges mounting with arbitrarily elastic translational and rotational restraints. The
solutions are given in closed forms for general cases of uniform restraints on all edges. The empirical formulas are suitable
for both isotropic and orthotropic plates and they are explicit in terms of the restraint parameters, elastic properties and
geometric ratio of the plate. The calculated results are compared with the published results and the numerical results
calculated according to the standard FEM program. The discrepancies in predicting the resonant frequencies are around 1.5
percent for the lower elastic modes and around 2.5 percent for the higher modes.

The empirical formulas derived herein is simple to implement even an elementary calculator may be used to calculate
the resonant frequencies of an orthotropic, rectangular plate supported at its edges with the classical boundary conditions.
On the other hand, Padé approximants have been developed to compute the corresponding resonant frequencies with
general boundary conditions. Again, an elementary calculator may be used to compute the resonant frequencies with no
prior knowledge of vibration and plate theory. Although the study only shows three examples with general boundary
conditions, the method can be easily extended to other situations.
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